Curriculum Information Year Six - Maths

WESTFIELD PRIMARY

Curriculum Intent Statement

Our aim is to provide our children with an engaging, exciting and empowering curriculum that provides them with the confidence and skills to flourish in today's society and the future.

At Westfield Primary the curriculum is designed to: recognise children's prior learning, provide first hand learning experiences, develop independence and creativity and build resilience and a love for learning.

Every child is recognised as a unique individual. We celebrate and welcome differences within our school community. The ability to learn is underpinned by the teaching of basic skills, knowledge-based curriculum, concepts and values. We provide many enhancement opportunities to engage learning and we actively encourage involvement and participation in sport, the arts and computing. Learning at Westfield is underpinned by the belief that childhood should be a happy, investigative and enquiring time in our lives where there are no limits to curiosity and there is a thirst for new experiences and knowledge. We promote positive attitudes to learning which reflect the values and skills needed to promote responsibility for learning and future success.

Community involvement is an integral part of our curriculum, inviting families and visitors to facilitate learning new skills and sharing experiences such as assemblies, curriculum afternoons, sporting activities and performances.

Children leave Westfield with a sense of belonging to a tightly knit community, where they have the confidence and skills to make decisions, self-evaluate, make connections and become lifelong learners.

In Year 6, pupils will be taught the following

Number and Place Value

Read, write, order and compare numbers up to $10,000,000$ and determine the value of each digit.
Round any whole number to a required degree of accuracy.
Use negative numbers in context and calculate intervals across 0.
Solve number and practical problems that involve all of the above.
Pupils use the whole number system, including saying, reading and writing numbers accurately.

Number - Addition, subtraction, multiplication and division

Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.
Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context.
Divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context.
Perform mental calculations, including with mixed operations and large numbers.
Identify common factors, common multiples and prime numbers.
Use their knowledge of the order of operations to carry out calculations involving the 4 operations.
Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

```
Use estimation to check answers to calculations and determine, in the context of a problem, an
appropriate degree of accuracy.
Pupils practise addition, subtraction, multiplication and division for larger numbers, using the formal written methods of columnar addition and subtraction, short and long multiplication, and short and long division.
They undertake mental calculations with increasingly large numbers and more complex calculations.
Pupils continue to use all the multiplication tables to calculate mathematical statements in order to maintain their fluency.
Pupils round answers to a specified degree of accuracy, for example, to the nearest 10, 20, 50, etc, but not to a specified number of significant figures.
Pupils explore the order of operations using brackets; for example, \(2+1 \times 3=5\) and \((2+1) \times 3=\) 9.
Common factors can be related to finding equivalent fractions.
```

Fractions - including decimals and percentages

Use common factors to simplify fractions; use common multiples to express fractions in the same denomination.
Compare and order fractions, including fractions >1.
Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions.
$\left.\begin{array}{l}\text { Multiply simple pairs of proper fractions, writing the answer in its simplest form [for } \\ \text { example, } \frac{1}{4} \times \frac{1}{2}=\frac{1}{8}\end{array}\right]$.
Divide proper fractions by whole numbers [for example, $\frac{1}{3} \div 2=\frac{1}{6}$].
Associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375]
for a simple fraction [for example, $\frac{3}{8}$].

Identify the value of each digit in numbers given to 3 decimal places and multiply and divide numbers by 10,100 and 1,000 giving answers up to 3 decimal places. Multiply one-digit numbers with up to 2 decimal places by whole numbers. Use written division methods in cases where the answer has up to 2 decimal places. Solve problems which require answers to be rounded to specified degrees of accuracy. Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts. Pupils should practise, use and understand the addition and subtraction of fractions with different denominators by identifying equivalent fractions with the same denominator. They should start with fractions where the denominator of one fraction is a multiple of the other (for $\frac{1}{2}+\frac{1}{8}=\frac{5}{8}$] and progress to varied and increasingly complex problems. example, Pupils should use a variety of images to support their understanding of multiplication with fractions. This follows earlier work about fractions as operators (fractions of), as numbers, and as equal parts of objects, for example as parts of a rectangle. Pupils use their understanding of the relationship between unit fractions and division to work backwards by multiplying a quantity that represents a unit fraction to find the whole quantity (for example, if quarter of a length is 36 cm, then the whole length is $36 \times 4=144 c m$). They practise calculations with simple fractions and decimal fraction equivalents to aid fluency, including listing equivalent fractions to identify fractions with common denominators. Pupis can explore and make conjectures about converting a simple fraction to a decimal fraction (for example, $3 \div 8=0.375$). For simple fractions with recurring decimal equivalents, pupils learn about rounding the decimal to three decimal places, or other appropriate approximations depending on the context. Pupils multiply and divide numbers with up to 2 decimal places by one-digit and two-digit whole numbers. Pupils multiply decimals by whole numbers, starting with the simplest cases, such as $0.4 \times 2=0.8$ and in practical contexts, such as measures and money. Pupils are introduced to the division of decimal numbers by one-digit whole numbers, initially, in practical contexts involving measures and money. They recognise division calculations as the inverse of multiplication. Pupils also develop their skills of rounding and estimating as a means of predicting and checking

the order of magnitude of their answers to decimal calculations. This includes rounding answers

 to a specified degree of accuracy and checking the reasonableness of their answers.
Ratio and Proportion

Solve problems involving the relative sizes of 2 quantities where missing values can be found by using integer multiplication and division facts
Solve problems involving the calculation of percentages [for example, of measures and such as 15% of 360] and the use of percentages for comparison

Solve problems involving similar shapes where the scale factor is known or can be found.
Solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.

Pupils recognise proportionality in contexts when the relations between quantities are in the same ratio (for example, similar shapes and recipes).
Pupils link percentages or 360° to calculating angles of pie charts.
Pupils should consolidate their understanding of ratio when comparing quantities, sizes and scale drawings by solving a variety of problems. They might use the notation a:b to record their work.
Pupils solve problems involving unequal quantities, for example, 'for every egg you need 3 spoonfuls of flour', ' $\frac{3}{5}$ of the class are boys'. These problems are the foundation for later forma approaches to ratio and proportion.

Algebra

Use simple formulae.
Generate and describe linear number sequences.
Express missing number problems algebraically.
Find pairs of numbers that satisfy an equation with 2 unknowns.

Enumerate possibilities of combinations of 2 variables.

Pupils should be introduced to the use of symbols and letters to represent variables and unknowns in mathematical situations that they already understand, such as:

- missing numbers, lengths, coordinates and angles
- formulae in mathematics and science
- equivalent expressions (for example, $a+b=b+a$)
- generalisations of number patterns
- number puzzles (for example, what 2 numbers can add up to)

Measurement

Solve problems involving the calculation and conversion of units of measure, using decimal
notation up to 3 decimal places where appropriate.
Use, read, write and convert between standard units, converting measurements of length, mass,
volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal
notation to up to 3 decimal places.
Convert between miles and kilometres.
Recognise that shapes with the same areas can have different perimeters and vice versa.
Recognise when it is possible to use formulae for area and volume of shapes.
Calculate the area of parallelograms and triangles.
Calculate, estimate and compare volume of cubes and cuboids using standard units, including
cubic centimetres (cm ${ }^{3}$) and cubic metres (m^{3}), and extending to other units [for example, mm
and km ${ }^{3}$.
Pupils connect conversion (for example, from kilometres to miles) to a graphical representation
as preparation for understanding linear/proportional graphs.
They know approximate conversions and are able to tell if an answer is sensible.
Using the number line, pupils use, add and subtract positive and negative integers for measures

such as temperature.

They relate the area of rectangles to parallelograms and triangles, for example, by dissection, and calculate their areas, understanding and using the formulae (in words or symbols) to do this.
Pupils could be introduced to compound units for speed, such as miles per hour, and apply their knowledge in science or other subjects as appropriate.

Geometry - Properties of shapes

$$
\begin{aligned}
& \hline \text { Draw 2-D shapes using given dimensions and angles. } \\
& \hline \text { Recognise, describe and build simple 3-D shapes, including making nets. } \\
& \hline \text { Compare and classify geometric shapes based on their properties and sizes and find unknown } \\
& \text { angles in any triangles, quadrilaterals, and regular polygons. } \\
& \hline \text { Illustrate and name parts of circles, including radius, diameter and circumference and know that } \\
& \text { the diameter is twice the radius. } \\
& \hline \text { Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and } \\
& \text { find missing angles. } \\
& \hline \text { Pupils draw shapes and nets accurately, using measuring tools and conventional markings and } \\
& \text { labels for lines and angles. } \\
& \text { Pupils describe the properties of shapes and explain how unknown angles and lengths can be } \\
& \text { derived from known measurements. } \\
& \text { These relationships might be expressed algebraically for example, } \mathbf{d = \mathbf { 2 } \times \mathbf { r } ; \mathbf { a = 1 8 0 - (b + c) . ~ }} \mathbf{l}
\end{aligned}
$$

Geometry - Position and Direction

- describe positions on the full coordinate grid (all 4 quadrants).
- draw and translate simple shapes on the coordinate plane, and reflect them in the axes.

Pupils draw and label a pair of axes in all 4 quadrants with equal scaling. This extends their knowledge of one quadrant to all 4 quadrants, including the use of negative numbers. Pupils draw and label rectangles (including squares), parallelograms and rhombuses, specified by coordinates in the four quadrants, predicting missing coordinates using the properties of shapes. These might be expressed algebraically for example, translating vertex (a,b) to (a-2,b $+3) ;(a, b)$ and $(a+d, b+d)$ being opposite vertices of a square of side d.

Statistics

- interpret and construct pie charts and line graphs and use these to solve problems.
- calculate and interpret the mean as an average.

Pupils connect their work on angles, fractions and percentages to the interpretation of pie charts.
Pupils both encounter and draw graphs relating 2 variables, arising from their own enquiry and in other subjects.
They should connect conversion from kilometres to miles in measurement to its graphical representation.
Pupils know when it is appropriate to find the mean of a data set.

