Westfield Primary School

Westfield Calculation Policy 2021

Both staff and pupil wellbeing have been considered in the review of this policy.
Mathematical understanding is underpinned by a child's secure knowledge of calculation. At Westfield, we believe that children learn effectively through being exposed to a variety of representations. Beginning with concrete (practical resources - dienes equipment, place value coins), moving to pictorial (drawings, empty number lines) which assists abstract (column addition, long multiplication).

This policy demonstrates Westfield's progression of calculation for each operation to ensure a consistent approach from one year group to the next.

	Concrete and pictorial	Abstract
Addition	Counting objects practically Children use part whole models and practical resources to add numbers together.	$3+2=5$
	Number line Children start at the largest number on the number line and jump the number of steps needed to add. The number they land is the answer.	$12+5=17$

Westfield Primary School

Regrouping to make 10

Begin by making 7 and 6
$7+6=13$

Move (regroup) counters to create a full set of 10 , then add the remaining to 10 to find the answer.

Partitioning using base 10 equipment

This method can be used for a range of calculations $(2 D+2 D, 3 D+2 D, 3 D+3 D, 4 D+3 D, 4 D+4 D \ldots)$
Not crossing boundaries

Westfield Primary School

Westfield Primary School

Empty number lines

The children draw a straight line, start with the largest number at the start and break the numbers down to add on in chunks. Children record what they have added in each jump and record the number they have landed on underneath the number line.

$39+24=63$
$536+231=767$

Westfield Primary School

Westfield Primary School

Counting objects practically
Children use part whole models and practical resources to subtract numbers from each other.

Begin by making the number to take away from using the 10 frame.

10

4

Physically take away counters to find the answer.

Westfield Primary School

Westfield Primary School

	Crossing boundaries Children use their secure knowledge of place value to subtract. Start by subtracting from the largest place value digit within the number and count backwards through the numbers. $52-25=27$ $52-20=32$ $52 \ldots 42 \ldots 32$ $32-5=27$ $32 \ldots 31 \ldots 30 \ldots 29 \ldots 28 \ldots 27$ And $573-257=216$ $573-200=373$ 573... 473... 373 $373-50=323$ 373... 363...353...343...333... 323 $323-7=316$ $323 \ldots 322 \ldots 321 \ldots 320 \ldots 319 \ldots 318 \ldots 317 \ldots 316$	$\begin{aligned} & 285-162= \\ & 285-100-60-2=123 \end{aligned}$ $\begin{aligned} & 52-25=27 \\ & 52-20-5=27 \end{aligned}$ $\begin{aligned} & 573-257=216 \\ & 573-200-50-7=316 \end{aligned}$

Westfield Primary School

Empty number lines

Children draw a straight line, start with the largest number at the end and break the numbers down to subtract in chunks. Children record what they have subtracted in each jump and record the number they have landed on underneath the number line.

Alternatively, children draw a straight line, start with the number they are subtracting at the beginning of the number line and count on in chunks to find the difference. Children jump to the next rounded number, recording how many they have counted on in each jump and record the number they have landed on underneath until they reach the number they stared with. The answer is the total jumps when they have been added together. This method is often preferable if the numbers are closer together.

$52-25=27$
$373-154=219$

$75-51=24$

$10+9+5=24$ numbers jumped
$641-489=152$
$100+40+10+1+1=152$ numbers jumped

Westfield Primary School

Westfield Primary School

$3 \times 2=6$
$3 \times 4=12$

This method can also be shown on a number line or empty number line.

Counting in 4 s 3 times. The number landed on is the answer.

Westfield Primary School

Westfield Primary School

	Partitioning	
		$\begin{aligned} & 24 \times 6= \\ & 20 \times 6=120 \\ & 4 \times 6=24 \\ & 120+24=144 \end{aligned}$

Westfield Primary School

Westfield Primary School

	Formal column method Expanded column method and column method The children begin by building the number The correct amount of times needed.	The children then count the amount of place value coins in each column beginning with the ones and moving through each column and exchanging where needed.	Expanded column method $253 \times 14=3542$ $\begin{array}{r} 253 \\ \times \quad 14 \\ 1012 \\ +2530 \\ \hline 3542 \end{array}$ Formal column method $332 \times 4=1328$ $\begin{array}{r} 332 \\ \times \quad 4 \\ \hline 1328 \\ \hline \end{array}$
Division	Sharing practically	Children begin by counting the number of objects needed and share into the number of groups shown within the division calculation.	$6 \div 2=3$

Westfield Primary School

(s)

Westfield Primary School

If the number has a remainder, the children will jump in equal steps (subtracting) given by the divisor until they can't subtract that number anymore without going into negative numbers. They count the number of jumps they have taken and count the remaining to get to zero to give them the remainders.

In a column (used for larger numbers)

```
5273
-200
-50 % ©5
-20
```

$40+10+4=54$

54 r 3
$42 \div 6=7$
$16 \div 3=5$ r 1
$45 \div 6=7 \mathrm{r} 3$
$273 \div 5=54$ r 3

Westfield Primary School

Sharing using place value coins

No remainders

Children split their place value gird into the number of the divisor given in the division calculation and use place value coins to share the hundreds, tens and then ones. To find the answer children count how many is in a group.

With remainders

Children split their place value gird into the number of the divisor given in the division calculation and use place value coins to share the hundreds, tens and then ones. Where children are unable to share equally, they exchange into the next lower lace value column. They continue this process until they have reached the ones. If any remain within the ones, these are the remainders. To find the answer children count how many is in a group.


```
448\div4=112
\[
400 \div 4=100
\]
\[
40 \div 4=10
\]
\[
8 \div 4=2
\]
```

$$
100+10+2=112
$$

```
574\div4=143 r 2
400\div4=100
60\div4=40
14\div4=3r 2
100+40+3r2=143r2
```


Westfield Primary School

Westfield Primary School

Long division
 $$
\begin{array}{|ccc} & \begin{array}{c} 032 \mathrm{r} 4 \\ 3 \times 12 \end{array} & \begin{array}{c} 3^{3} 88 \\ \\ 2 \times 12 \end{array} \\ & \frac{-36}{28} 8 \\ & \frac{-24}{04} \end{array} \text { mbve down }
$$
 $$
2 \times 12
$$

Step 1: exchange 3 hundreds for 30 tens, now we have 38 tens.
Step 2: how many groups of 12 can I make with 38 tens? The 36 shows the tens we have grouped. The 2 is how many tens we have left.
Step 3: move the ones down to continue working.
Step 4: exchange 2 tens for 20 ones, now we have 28 ones.
Step 5: how many groups of 12 can I make with 28 ones? The 24 shows the ones we have grouped. The 4 is how many ones we have left, these become the remainders.
Step 6: record the number of groups as you work.
$388 \div 12=32 \mathrm{r} 4$

